Smart City technology trends: part 3

Smart Cities: technology trends (Part 3)

Recently I’ve been asked to write a technology trends paper for the IEEE looking at the main technology trends affecting Smart Cities. This is a broad topic, covering a lot of ground and I’ve been forced to pick a subset of technology trends that are affecting the evolution of smart cities. I’ve broken the topic into manageable sections – each a single blog post – as follows:

  • PART 1
    • Smart cities: background and technology ecosystem
    • Key technology areas #1
      • Networking,
      • Cyber-physical systems and the IoT,
      • Cloud and Edge computing
  • PART 2
    • Key technology areas #2
      • Big Data,
      • Open Data,
      • Citizen Engagement
      • Smart City Standards
  • PART 3 (This post)
    • Smart Cities: Impact of technology trends
      • Business issues
      • Recommendations

Smart Cities: An overview of the technology trends driving Smart Cities (Part 3)

Business aspects

Although this trend paper focuses on technological trends, as outlined in the introduction, Smart Cities are complex ecosystems that cut across technological, social, organizational and business domains. Understanding the role-out of technologies and their relative importance in the ecosystem requires an understanding of the business drivers that affect their deployment and uptake and an overview of the Smart City marketplace.

Increased urbanization, the development and growth of newer cities, along with the natural renewal of infrastructure in established cities, means that the Smart City marketplace is both large and growing. While the scope and size of the market is difficult to accurately quantify, and estimates vary, all place the size of the market in the $300-700 billion range. For example, a market scoping [1] by the UK’s Department of Trade and Industry, suggests “We estimate the global market for smart city solutions and the additional services required to deploy them to be $408 billion by 2020. Breaking this down by vertical, in transport for example, Pike Research estimates a global market for smart transport solutions based on digital infrastructure to be $4.5 billion by 2018. These solutions are enabling solutions for a wider market of $100 billion by 2018 which includes the physical and digital infrastructure for parking management and guidance, smart ticketing and traffic management. Also included in this $100 billion are the traditional and new services such as heavy engineering, road design and big data analytics which are required as a result of investment in digital smart transport solutions. “

Similarly a report by Frost & Sullivan[2] breaks down the total spend into market segments, identifying Governance & Education, Healthcare and Energy as three of the largest business opportunities.

Trends and recommendations

This report has highlighted a number of technologies whose evolution and deployment is contributing to the growth of Smart Cities. Some high level observations:

  • Focus on point solutions: While many major cities are aware of, and to some extent pursuing smart city strategies, it is clear that at the moment most Smart City deployments are focused on specific infrastructure needs. For example reducing water loss by upgrading ageing pipe infrastructure, or improving transportation efficiency through monitoring. Companies need to focus on these types of projects and look for incremental ways to connect individual systems (silos) to provide aggregate efficiencies and support new services.
  • Instrumentation and actuation from IoT: As sensors/actuators are being replaced in the system, an increasing percentage of city infrastructure is becoming IoT connected. Cities that are recognizing this and putting in place middleware and cloud systems to capture and use this data will see significant advantages over time.
  • Value from analytics: Today few cities gather and analyze city data in a comprehensive way. Some lead examples do exist but most cities are still developing these capabilities. Both government and industry need to adopt big data strategies as part of their core framework, building from a cloud centric perspective solutions that incorporate data analytics as core capabilities. The growth of this area is likely to rapidly increase over the next decade with significant investment by cities in analytic capabilities.
  • Different regions have different needs. It is clear that the needs of a Smart City in India are different than those in Europe – different regions are grappling with different problems and so will need different solutions. However, the underlying technology trends do not differ and so the problem becomes the most appropriate application of a technology to meet a city’s needs. Companies that are able to adopt a flexible approach to delivering solution will reap benefits.
  • Collaboration is critical. Few, if any companies can deliver a full Smart City solution. Therefore companies need to identify their role in the Smart City solution ecosystem and work to develop partnerships that allow them to collectively offer solutions to cities. Major players will be able to use M&A activity to plug capability gaps.
  • Citizen engagement and activism are shaping the thinking of cities. Companies that can tap into this, and can show how their approaches and solution benefit from Citizen Engagement will accrue advantage through differentiation. Cities that develop comprehensive citizen engagement strategies will also benefit from citizens that are franchised as well as the collective wisdom of the community.

Resources

IEEE Smart Cities initiativehttp://smartcities.ieee.org/

There has been a significant activity by IEEE to promote Smart Cities and to engage cities in using technologies to develop new services. Examples are Core Cities of Guadalajara in México, Trento in Italy, Wuxi in China, Casablanca in Morocco , Kansas City in US.
Additionally this initiative organized the first two international Conferences on Smart Cities successfully implemented in Guadalajara México 2015 and Trento Italy 2016, being planned the third edition for Wuxi China in 2017.
IEEE Industry activityhttp://industry.ieee.org

A portal of IEEE resources targeted at industry and practitioners including content on Professional development, standards and emerging technologies and trends.

BSI Smart Citieshttp://www.bsigroup.com/en-GB/smart-cities/

A set of standards focused resources from the British Standards Institute that focus on the Smart City domain.

References

  • [1] https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/249423/bis-13-1217-smart-city-market-opportunties-uk.pdf
  • [2] http://www.egr.msu.edu/~aesc310-web/resources/SmartCities/Smart%20City%20Market%20Report%202.pdf

Smart City technology trends: part 2

Smart Cities: technology trends (Part 2)

Recently I’ve been asked to write a technology trends paper for the IEEE looking at the main technology trends affecting Smart Cities. This is a broad topic, covering a lot of ground and I’ve been forced to pick a subset of technology trends that are affecting the evolution of smart cities. I’ve broken the topic into manageable sections – each a single blog post – as follows:

  • PART 1
    • Smart cities: background and technology ecosystem
    • Key technology areas #1
      • Networking,
      • Cyber-physical systems and the IoT,
      • Cloud and Edge computing
  • PART 2 (this post)
    • Key technology areas #2
      • Big Data,
      • Open Data,
      • Citizen Engagement
      • Smart City Standards
  • PART 3
    • Smart Cities: Impact of technology trends
      • Business issues
      • Recommendations

Smart Cities: An overview of the technology trends driving Smart Cities (Part 2)

Open data

Another significant trend in Smart Cities is the adoption and exploitation of Open Data. Open Data in the context of Smart Cities refers to public policy that requires or encourages public agencies to release data sets and make them freely accessible. Typical examples are city wide crime statistics, city service levels, infrastructure data, etc. Many governments and leading cities now run open data portals, e.g., the UK and Canadian data portals, (data.gov.uk, open.canada.ca) and city portals such as San Francisco (dataSF.org), and London (data.london.gov.uk).

While Open Data is not a technology trend in itself, it leverages a number of the underlying technologies discussed, such as Cloud Computing, IoT, etc. and is a source of big city data. Open Data is driving the use of these technologies as cities develop open data portals and other city stakeholders begin to exploit access to this open data. Equally it needs to address some of the challenges associated with big data including data security and in particular issues of privacy.

The evolution of open data represents a broadening of the information available related to city operations. It’s primary goal is transparency, but a significant subsidiary goal is to make information available to third parties that can be exploited to improve city services and foster innovation around new services. San Francisco in the USA and London in the UK have led efforts to exploit open data with local companies creating mobile applications based on Park data[1], tourism, parking and transportation[2]. Similar approaches are appearing in cities across the world. It is clear that increasingly cities will make available more data as open data. However, what is also likely is that the ecosystem of open data providers and operators will evolve with an cities taking on less of a role as open data operators and an increasing number of 3rd parties taking city data and curating it for both citizen and business needs. An interesting early example of this is the City Data Exchange operated in Copenhagen[3].

Big data and data analytics

Smart Cities, by their very nature, generate significant amounts of data in their daily operations. The trends identified above, e.g. IoT, Open Data are driving cities to collect and make available additional significant amounts of data – some static but increasingly large parts of it are real-time data. This data exhibits the classic characteristics of Big Data – high volume, often real-time (velocity) and extremely heterogeneous in its sources, formats and characteristics (variability).

This big data can, if managed and analyzed well, offer insights and economic value that cities and city stakeholders can use to improve efficiency and lead to innovate new services that improve the lives of citizens.

The evolving technology that captures, manages and analyses this Big Data, leverages technology trends such as cloud computing. Cities are now able to access and use massive compute resources that were too expensive to own and manage only a few years ago. Coupled with technologies like Hadoop/HDFS, Spark, Hive and a plethora of proprietary tools it is now possible for cities to harness big data and analytical tools to improve the city.

For example Boston, USA is using big data to better track city performance against a range of indicators, but also to identify potholes in city streets and to improve the efficiency of garbage collection by switching to a demand driven approach[4]. New York has developed a system (FireCast) that analyses data from 6 city departments to identify buildings with a high fire risk[5]. London uses a wide variety of city data and advanced analytics to map individual neighborhoods to better understand resource allocation and planning which is made available through the Whereabouts service[6]. Singapore tracks real time transportation and runs a demand driven road pricing scheme to optimize road usage across the island[7].

Citizen engagement.

Citizen engagement represents a complementary aspect of Smart Cities and although not strictly a technical consideration, relies on the data gathering and data management discussed in the open data and big data sections. Essentially it aims to harness technology in support of greater engagement with citizens – partly in an attempt to ‘tap into the collective intelligence’ of cities and partly to understand better what citizens do and need in their daily lives. In this context, engagement is not just with citizens, but with the entire ecosystems, city workers, businesses, tourists etc. While it may be obvious that cities need to engage and listen to their citizens, it is surprising how few channels exist for meaningful dialogue between cities and their citizens. To address this, a trend over the last 5 years in leading Smart Cities is the exploitation of technology to engage and communicate with citizens. This has taken a variety of forms including:

  • Phone or web applications to allow citizens to report city issues such as graffiti, accidents, etc. or to directly engage with city services (often referred to as 311 services in N. America). Originating from work in Washington DC, details of activities in cities such as Boston, Helsinki, London can be found on the open311 organization’s website[8].
  • Hackathons and other developer events to engage the technical community with Open data and new service initiatives. Successful examples include the Code for America program[9] and other tech focused routes adopted in Europe[10]
  • Co-design and user centric design processes to engage citizens in the ideation, design and delivery of new services. This citizen centric approach has be tried in a variety of forms in many cities, with early adopters such such as Milton Keynes[11]in the UK or the EU’s citizen city project[12] developing best practices.
  • Crowdsourcing city data from citizens to better understand the activities and actions of the urban population, or to use citizens to help gather data that is otherwise hard to obtain. Examples include crowdsourcing flood information in Jakarta using tweets[13] and using citizen input to create wheelchair accessibility maps in Böblingen in Germany[14].

Engagement, as described above, is actually an initial step towards empowerment. The ultimate goal of citizen engagement is the empowerment of citizens to take on and improve their daily lives through community leadership.

The 6 major trends identified above are critical to the role out of smart cities and will shape the way technology is used to enrich the lives of citizens. Obviously they are not the only factors, other areas such as security, privacy, environmental sustainability and a host of others cut across these technology trends shaping their evolution and deployment. However, these 6 trends are critical and are shaping the future of our cities. In the next section, we explore standards activities that relate to these 6 areas and to the more general smart city landscape.

Standards

Standards are critical to the evolution of Smart Cities helping to smooth the adoption of new technologies and providing a trusted framework for city authorities and practitioners. All of the technological areas outlined above are subject to intense standardization activities with significant ongoing activity in the standards bodies, both international organizations such as ISO, ETSI and the ITU as well as national bodies and of course the IEEE. A useful overview of the main international activities is captured by the UK’s national body in its Smart City Overview document[15].

The figure above, based loosely on the UK’s Standards documents shows standards body activities grouped into three levels, with Strategic focusing on providing guidance to city leadership, Process looking at procuring and managing smart city projects and activities and technical looking at the lower level details of the technologies used for Smart City projects – obviously IEEE standards tend to focus on the lower part of the diagram.

At the strategic level, an important standard is the ISO 37120 Sustainable development of communities — Indicators for city services and quality of life. This standard, part of a suite by ISO’s Technical Committee 268 identifies 100 indicators that cities should track to allow them to benchmark progress. There are a number of cities moving to adopt these standards and efforts to benchmark across cities by the World Council on City Data[16]. The BSI has led some of the early thinking on a strategic approach to Smart Cities and has recently created the Smart City Institute in conjunction with the UK’s Future City Catapult[17].

At the more technical level, the ISO JTC1 committee has produced useful survey documents on Smart City standards activities and is shepherding two technical standards that are still under development, (from the ISO/IEC JTC1 group) but worth tracking are ISO/IEC AWI 30145 Information technology – Smart city ICT reference framework and the associated ISO/IEC AWI 30146 Information technology – Smart city ICT indicators which are both looking at the ICT infrastructure needed for Smart Cities.

The IEEE, recognizing that the IoT is a critical technology trend, has led efforts to create IEEE P2413™, Draft IEEE Standard for an Architectural Framework for the Internet of Things (IoT). IEEE P2413 (http://standards.ieee.org/develop/project/2413.html) is in development to propose an architectural framework supporting cross-domain interaction, system interoperability and functional compatibility and to fuel the growth of the IoT market. Additionally, the ITU has an active standards group (Study Group 20) in the IoT area[18].

The IEEE-SA is known for taking a system-of-systems perspective in standardization. As an example, in the area of Smart Grids, IEEE 2030®, IEEE Guide for Smart Grid Interoperability of Energy Technology and Information Technology Operation with the Electric Power System (EPS), End-Use Applications, and Loads. A more comprehensive list of IEEE standards related to Smart Cities can be found in the “IEEE standards activities for Smart Cities” document[19].

Summary

The final part of this 3 series blog post explores the ramifications of these technology trends on the business landscape for smart cities and concludes with some recommendations for companies working in the Smart City space. Read Part 3 here

References

  • [1] https://www.greenbiz.com/blog/2013/01/16/how-san-francisco-taps-open-data-city-apps
  • [2] http://data.london.gov.uk/case-studies/
  • [3] http://www.vinnova.se/PageFiles/751333230/Copenhagen%20smart%20city%20opl%C3%A6g%20i%20Stockholm2.pdf
  • [4] http://www.economist.com/news/special-report/21695194-better-use-data-could-make-cities-more-efficientand-more-democratic-how-cities-score
  • [5] http://www.govtech.com/public-safety/New-York-City-Fights-Fire-with-Data.html
  • [6] http://whereaboutslondon.org/#/
  • [7] https://www.lta.gov.sg/content/ltaweb/en/roads-and-motoring/managing-traffic-and-congestion/electronic-road-pricing-erp.html
  • [8] http://www.open311.org/
  • [9] https://www.codeforamerica.org/
  • [10] http://www.nesta.org.uk/blog/power-people-how-cities-can-use-digital-technology-engage-and-empower-citizens
  • [11] http://www.mksmart.org/citizens/
  • [12] https://eu-smartcities.eu/content/citizen-city
  • [13] http://www.citymetric.com/horizons/making-smart-cities-work-people-no-1-crowdsourcing-flood-maps-jakarta-1228
  • [14] http://www.citymetric.com/horizons/making-smart-cities-work-people-no-5-b-blingen-s-crowdsourced-accessibility-maps-1519
  • [15] http://www.bsigroup.com/en-GB/smart-cities/Smart-Cities-Standards-and-Publication/PD-8100-smart-cities-overview/
  • [16] http://www.dataforcities.org/wccd/
  • [17] https://www.bsigroup.com/en-GB/smart-cities/The-Cities-Standards-Institution/
  • [18] http://www.itu.int/en/ITU-T/studygroups/2013-2016/20/Pages/default.aspx
  • [19] http://standards.ieee.org/develop/msp/smartcities.pdf

Smart City technology trends: part 1

Smart Cities: technology trends (Part 1)

Recently I’ve been asked to write a technology trends paper for the IEEE looking at the main technology trends affecting Smart Cities. This is a broad topic, covering a lot of ground and I’ve been forced to pick a subset of technology trends that are affecting the evolution of smart cities. I’ve broken the topic into manageable sections – each a single blog post – as follows:

  • PART 1 (this blog)
    • Smart cities: background and technology ecosystem
    • Key technology areas #1
      • Networking,
      • Cyber-physical systems and the IoT,
      • Cloud and Edge computing
  • PART 2
    • Key technology areas #2
      • Big Data,
      • Open Data,
      • Citizen Engagement
      • Smart City Standards
  • PART 3
    • Smart Cities: Impact of technology trends
      • Business issues
      • Recommendations

Smart Cities: An overview of the technology trends driving Smart Cities

Rodger Lea

Background

According to the UN Population fund, in 2014, 54% of the world’s population lived in Urban areas, approximately 3.3bn people. By 2030, roughly 66%, or 5bn people will live in Urban areas[1]. This not only represents a massive challenge in how we build and manage cities, but a significant opportunity to improve the lives of billions of people. Rising to that challenge, engineers worldwide are turning to new technologies such as the Cyber Physical Systems (IoT/M2M), 5G, Big data analytics etc., searching for new approaches and solutions that will improve city transportation, water and waste management, energy usage and a host of other infrastructure issues that underpin the operation of cities and the lifestyle of urban citizens.

There are many definitions for Smart Cities, ranging from those that focus exclusively on the infrastructure to those that focus more on enabling citizens and communities to act smarter. While no one definition suits all cities, a useful definition[2] we use in this series is from the ITU:

“A smart sustainable city is an innovative city that uses information and communication technologies (ICTs) and other means to improve quality of life, efficiency of urban operation and services, and competitiveness, while ensuring that it meets the needs of present and future generations with respect to economic, social and environmental aspects”

This definition emphasis that a Smart City is not just a city that leverage new technologies; it is a complex ecosystem made up of many stakeholders including citizens, city authorities, local companies and industry, community groups. Further, it should be stressed that the geographical boundaries of what is called a Smart City may be wider than the city itself, gathering multiple governance bodies and municipalities, to define services at the metropolitan or regional scale.

In this trend report, we focus on technology trends that are shaping how Smart Cities are evolving, however, it is important to ensure that when considering the application of technologies to solve problems, the human and institutional aspects are taken into consideration. In essence a cardinal goal of the Smart City is to create value for its entire ecosystem, whether this value is financial, quality of life, health, education, time, etc. The value created by a Smart City can be assessed using both quantitative and qualitative metrics.

Smart City technological ecosystems

From the technological perspective, the Smart City ecosystem is a complex one, comprising many technology areas. Major players operate in several areas providing solutions that complement (and sometimes overlap) other players. Those companies that are able to do so, are working towards a convergence point where they can provide end-to-end solutions to city technology needs. However, most players lack the scale to achieve this and must work in collaboration with partners from other technology segments. To visualize the technology ecosystem, we can identify five key technology groupings (based loosely on a Frost and Sullivan report[3]) as shown below.

In much the same way that Smart Cities are in fact complex ecosystems comprising a range of stakeholders, developing and deploying new services into smart cities generally requires a holistic approach to technology deployment. Since Smart Cities are built with a number of sub-systems, e.g. transport, health, energy etc., a system of systems (SoS) approach is needed to reason about and address city and citizen needs. While it is the case that some large companies are able to develop and deploy

effective Smart City services by themselves, this is not the norm. Rather, it is often the case that successful Smart City deployment requires a number of companies to work together to combine solutions and technologies ranging from the low level sensors/actuators, effective data communications, data gathering and analysis to domain specific applications such as healthcare, energy, transport etc.

  • [1] http://www.unfpa.org/urbanization
  • [2] http://www.itu.int/en/ITU-T/focusgroups/ssc/Pages/default.aspx
  • [3] http://www.egr.msu.edu/~aesc310-web/resources/SmartCities/Smart%20City%20Market%20Report%202.pdf

Key technology challenges and enablers

Underpinning the growing Smart City market are a number of broad ICT technology trends that enable the key segments such as energy, transportation, urban planning etc., to exploit new technologies to deliver smart solutions to cities and citizens. In the following section we highlight a number of these key technology trends and their impact on Smart Cities.

Networking and communications

Critical to many of the technology trends related to Smart Cities is the underlying communications infrastructure that enables smart cities to connect infrastructure, devices and people, gather data and deliver services to a myriad of end points. The complexity of the Smart City technological and service ecosystems requires an holistic approach to networking as well as communications that offer support for a range of needs, from infrastructure monitoring through to backbones for digital media enterprises, from household security to city-wide transportation monitoring. These diverse needs dictate that any smart city will encompass a range of technologies from low bandwidth, wireless technologies, such as BLE and Zigbee, through to dedicated fibre optics for backbone needs. Some critical technology trends that will affect future Smart City developments include:

Low Power WAN technologies. Fitting a niche in the technological landscape between personal/local area networking technologies, such as BLE, Zigbee, WiFi etc., and licenced cellular networking, such as existing 3/4G, and the evolution to 5G sit technologies such as LoRaWAN and the evolving 802.11ah. These technologies use unlicensed spectrum and focus on low power and low cost. While some argue they are a stop-gap measure before the deployment of 5G networks, they are the subject of much interest, and a number of trials have been carried out by NTT in Japan, SigFox in France and Australia and Comcast in the USA. One major appeal driving city adoption is the ability to offer a city-wide service, for free, at a relatively low capital cost, an approach taken by the non-profit organization ThingsNetwork[1].

3/4G evolution. While there is significant activities around the development of 5G standards, these are not expected to have full deployment until 2020. In the meantime a number of important initiatives are focused on mid-term evolution of existing cellular technologies. The 3GPP consortium is working on several activities including work on CAT-1 (and Cat-0) as well as the upcoming CAT-M1 and the Narrow-Band Long-Term Evolution (NB-LTE). These standards focus on IoT scenarios and include better energy efficiencies, cost reductions and better penetration/density – all critical for IoT situations in Smart Cities.

5G: Next generation networking (5G) is the subject of intense technological (and business) activity with a number of major initiatives underway. 5G aims to address some of the key future needs of smart cities with higher bandwidth, delivery and performance guarantees, adaptability, energy efficiency and real time capabilities. 5G is still an evolving space, with considerable discussion on its long term goals and technologies[2]. This complexity and rapid rate of change in the 5G space makes it difficult to provide more than a brief overview. For a fuller exploration of 5G please see the IEEE Industry Trend paper on 5G published as part of this series.

Irrespective of the evolution of 4G and the eventual transition of 5G, two critical technology trends that address the need combine multiple evolving technologies are Software-defined Networking (SDN) and Network Function Virtualization (NFV). Obviously this complex networking landscape poses a challenge as operators and users grapple with needs that span multiple technologies. One solution to this is the adoption of SDN and NFV technologies that allow network operators to mix and match services using SDN, and to push more intelligence into their networks (edge processing) using NFV[3],[4].

Cyber Physical Systems and the IoT

Cyber Physical Systems and the Internet of things (IoT), defined generally as the connection and virtual representation of physical devices to the internet, is critical to the growth of Smart Cities. While it is the case that many parts of traditional city infrastructure have been monitored for many years (traffic, water, electricity), these were often monitored using proprietary technologies and maintained as individual silos. The IoT is changing that situation radically. City infrastructure – some of which may have been traditionally monitored – is now being connected using open standard protocols (IP, HTTP, etc.) and made accessible through web technologies such as REST. Lower ‘hookup’ costs are allowing the sensing to expand to more parts of the city infrastructure and enabling higher fidelity sensing. A good example is energy management, although traditionally many cities (via public or local utilities) have been able to measure and monitor some city energy usage, increasingly private and commercial buildings are being hooked up via smart meters which in turn enables the adoption of micro-grid technologies.

Importantly, this trend to better sensing (and actuation) is not just about sensing city infrastructure such as roads and sewers. The costs and accessibility of IoT technologies is allowing private companies to instrument public infrastructure themselves. For example, auto manufacturers are increasingly sensing, not only the car itself, but its surroundings, traffic conditions and even providing sensed data in the case of accidents. Civil engineering firms are deploying sensors to monitor stress in structures such as tunnels, bridges or the quality of road surfaces[5]. Equally, citizens are deploying low cost sensors to track air pollution[6], noise levels or just employing their smartphones as mobile sensor platforms.

Obviously this growth in sensing is underpinned by wired and wireless communications, with low power mesh networking and the eventual move to 5G as key technology trends. While the IoT is driving a revolution in the ways we are able to sense and control the world around us, in the Smart City environment there are several technology trends – and issues – that are driving the way we can harness the IoT.

The sheer volume of data that is being generated is driving its own needs both in the platforms needed to capture and store the data, and in the tools and techniques needed to analyze the real time data. We will explore cloud technologies in support of Smart City platforms as well as trends in Big Data technologies in the sections below.

Cloud and Edge computing

Cloud computing has had a significant influence on the development of Smart Cities, affecting both the way cities manage and deliver services, and enabling a broader set of players to enter the Smart City market. Cloud computing – defined generally as the delivery of computing as a service – has offered organizations such as cities ways to reduce costs and increase efficiency. Due to legal and privacy concerns, cities have been reluctant to exploit the full benefits of public cloud services for core services, but many have used private cloud and some have experimented with public/private or hybrid cloud infrastructure[7]Where public cloud has been exploited, it has often been for non-core services or newer services. For example, Barcelona (Spain) has used public cloud infrastructure to deliver identity services and device management for its field-based workforce[8], for data analytics and to improve its CRM systems for managing citizen interactions.

A secondary factor driving the adoption of cloud solutions for Smart Cities is the massive increase in data that is being generated, captured and analyzed by cities as they start to deploy and exploit IoT technologies. New infrastructure sensing, combined with private data sources and citizen data means that cities now have access to a multitude of high-volume real-time data sources. While there are a number of examples of this use of cloud infrastructure in cities, Intelligent Transportation is a lead use-case, for example Taiwan has exploited cloud computing to handle the high data volume from its intelligent transportation systems (ITS)[9].

While cloud computing is an established part of Smart City solutions, an emerging trend is the augmentation of cloud computing with Edge (also known as Fog computing). Edge computing is a term used to describe the deployment and use of processing within and at the edge of the network[10]. This trend leverages the rollout of IoT infrastructure which often includes powerful processing and gateway devices to gather and communicate sensed data. The Edge computing model offers cities ways to manage and monitor distributed infrastructure – for example Intelligent Transportation Systems (ITS) – where processing is often best handled close to infrastructure for performance and timeliness reasons or building management systems focused on energy efficiency[11].

Part 2 of this report focuses on Big Data, Open Data, Citizen engagement and Smart City Standards

  • [1] https://www.thethingsnetwork.org/
  • [2] http://www.gsma.com/network2020/wp-content/uploads/2015/01/Understanding-5G-Perspectives-on-future-technological-advancements-in-mobile.pdf
  • [3] https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
  • [4] http://www.cio.com/article/2379216/business-analytics/understanding-how-sdn-and-nfv-can-work-together.html
  • [5] http://www-smartinfrastructure.eng.cam.ac.uk/news/future-cities-foresight-thought-piece-robert-mair
  • [6] https://www.fastcoexist.com/3026502/a-grassroots-environmental-sensor-network-so-you-dont-need-the-government-to-say-the-air-is-
  • [7] http://images.newsletters.lighting.philips.com/Web/PhilipsLighting/%7Bddcf75e7-1e51-40e6-9df2-88a2b59a902e%7D_Future-proofing_IT_for_Smart_City_services.pdf
  • [8] https://customers.microsoft.com/Pages/CustomerStory.aspx?recid=1939
  • [9] http://www.intel.com/content/www/us/en/connected-transportation-logistics/taiwan-fetc-improves-traffic-modernizes-taiwans-transportation-industry.html
  • [10] https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-solutions.pdf
  • [11] http://blogs.cisco.com/perspectives/iot-from-cloud-to-fog-computing